

Are Your Lift Emergency Systems About to go Silent?

5 hours ago

By Adrian Markwell, Managing Director, [PEW Electrical](#)

By January 2027, the UK's analogue telephone network will be switched off. For most people, this marks a quiet end to technology that has already been fading from everyday life. For facilities managers, however, the Public Switched Telephone Network (PSTN) and ISDN switch-off represents something far more pressing: a move away from a lifeline that has underpinned safety-critical systems for decades.

Nowhere is this more apparent than in lift emergency communications. In facilities across the UK, thousands of lifts continue to rely on analogue phone lines to power and connect auto-diallers that allow trapped passengers to call for help. When those lines are withdrawn, many of these systems will simply stop working. The result is not just a technical failure, but a serious compliance and safety issue that FMs and duty holders can't afford to overlook.

More than a telecoms change

Historically, analogue telephone lines did more than carry voice. They also supplied power, meaning lift alarms could remain operational even during a mains outage – and current auto-diallers were built around this assumption. So, when we remove the analogue network, in many cases, system resilience will disappear.

But if a passenger presses an emergency button and no call connects, the consequences are both immediate and severe. Occupants will be left without a lifeline and building operators could be exposed to failed inspections, non-compliance with safety standards, reputational damage and, in the worst cases, legal and moral responsibility for preventable harm.

The challenge is compounded by the fact that many organisations don't have clear visibility of the problem. Over time, communication systems may have been installed, upgraded or outsourced as part of maintenance contracts. This means that many organisations will not have a centralised record of which lifts are still connected to analogue lines, leaving asset data fragmented and responsibility unclear.

Visibility first: understanding your exposure

The first step towards resilience is visibility. Before any decisions can be made about upgrades, FMs need a clear picture of which lifts are still connected to PSTN or ISDN lines, what type of auto-diallers are installed, and how those systems behave during power loss.

To accurately assess the scale of exposure or plan investment effectively, a structured audit of lift emergency communications is essential. In many cases, a thorough review will also uncover other building systems, such as security alarms, that will also be exposed to the network switch-off. This type of audit is crucial to allow organisations to plan investment and

source the right solution for each system, allowing them to avoid reactive firefighting, unnecessary expense, rushed decisions and liability issues.

Compliance and resilience: what good looks like

The benchmark for lift emergency communications in the UK is BS EN 81-28. It sets out clear expectations which include reliable two-way communication, automatic testing, accurate lift identification for rescue services, and continued operation during a power failure.

Meeting those requirements in a post-PSTN world means choosing the right upgrade path and understanding how different solutions behave not just on an ordinary day, but when conditions are at their worst.

Broadly, there are two routes available to FMs: migrating to internet-based voice services, such as VoIP, or adopting GSM/SIM-based mobile alarm systems.

Both can be compliant, but they carry very different risks.

Route one: VoIP and internet-based voice

VoIP systems carry voice calls over broadband networks, much like everyday phone and video calls. The upside to this is easy integration: calls can be routed through existing networks with central oversight, call logs and links to monitoring centres. VoIP can also be engineered for reliability by using UPS backup for routers and switches, secondary internet connections and managed services that monitor performance.

However, the trade-off is dependency. Legacy lift auto-diallers rely on traditional signalling and DTMF tones, and those tones are not always carried cleanly across digital voice platforms. If tones are delayed or distorted, call routing can fail and the monitoring centre may not receive the notification it needs to act.

The other downside is power. Analogue lines often delivered power via the phone line; VoIP does not. Therefore, if mains power drops and the router, switch or broadband equipment goes down, the lift alarm could lose its route out when passengers need it most. If you choose VoIP, you must make sure the whole chain can operate reliably if power drops out – not just the alarm unit.

Route two: GSM and SIM-based mobile systems

The second route is GSM/SIM-based alarm units that call out over the mobile network instead of the building's fixed line or broadband. Most modern units include battery backup, which keep emergency communications available during power cuts.

The big advantage of this is independence. As the unit doesn't rely on site broadband, routers or wider IT uptime, it will work even if the building's network fails. This aligns with BS EN 81-28 by ensuring predictable performance, test calls that prove the system is live, and continuity if power is off.

In retrofit settings, GSM solutions can also be simpler to install. Replacing an existing auto-dialler is typically more straightforward than ensuring reliability across a whole site network, as would be needed with VoIP. Furthermore, when paired with managed SIM services,

connectivity can be monitored remotely, with early warnings if signal quality drops, batteries degrade or service is interrupted, enabling proactive maintenance.

The main considerations with this method are signal and service planning. Lift shafts, basements and dense concrete can weaken reception, so surveying matters and some sites will need external antennas or boosters. Network longevity is also critical: solutions should be 4G or 5G-ready, as 2G/3G services have already been withdrawn. Finally, costs associated with SIM management and monitoring must be factored into lifecycle budgets.

Choosing the right path

Both routes can work, but for FMs, it's critical that they know the risks. VoIP can be viable where IT infrastructure is genuinely resilient and well-managed, but it relies on multiple components staying live under stress. GSM solutions are often more reliable, as they are independent and typically battery-backed end to end, but signal and service must be considered.

What matters most is informed decision-making. FMs should test systems end to end, document how they perform during power loss, and clearly define responsibilities between lift contractors, telecoms providers and IT teams. Because when it comes to lift safety, resilience is not about what works on a normal day; it's about what still works when everything else doesn't.

Acting before the deadline

Whichever route is chosen, the greatest risk is delay. As the January 2027 deadline approaches, demand for upgrades will surge and contractors, suppliers and engineering resource will all be under pressure. Organisations that leave preparation too late may face unplanned downtime, failed inspections and higher costs driven by urgency rather than strategy.

By auditing assets now, understanding the implications of different upgrade routes and implementing a phased transition plan, facilities leaders can turn the PSTN switch-off from a serious safety threat into a managed change.

Because ultimately, this is not just a telecommunications milestone: it's a building safety issue. And the measure of success is simple: when someone presses an emergency button in a lift, help must be there

when they need it.